Minggu

Geometri

Geometri itu apa sih? Yuk simak materi berikut.
Geometri adalah cabang matematika yang bersangkutan dengan pertanyaan bentuk. Seorang ahli matematika yang bekerja di bidang geometri disebut ahli geometri. Geometri muncul secara independen di sejumlah budaya awal sebagai ilmu pengetahuan praktis tentang panjang, luas, dan volume, dengan unsur-unsur dari ilmu matematika formal yang muncul di Barat sedini Thales (abad 6 SM). Pada abad ke-3 SM geometri dimasukkan ke dalam bentuk aksiomatik oleh Euclid, yang dibantu oleh geometri Euclid, menjadi standar selama berabad-abad. Archimedes mengembangkan teknik cerdik untuk menghitung luas dan isi, dalam banyak cara mengantisipasi kalkulus integral yang modern. Bidang astronomi, terutama memetakan posisi bintang dan planet pada falak dan menggambarkan hubungan antara gerakan benda langit, menjabat sebagai sumber penting masalah geometrik selama satu berikutnya dan setengah milenium. Kedua geometri dan astronomi dianggap di dunia klasik untuk menjadi bagian dari Quadrivium tersebut, subset dari tujuh seni liberal dianggap penting untuk warga negara bebas untuk menguasai.

Pengenalan koordinat oleh René Descartes dan perkembangan bersamaan aljabar menandai tahap baru untuk geometri, karena tokoh geometris, seperti kurva pesawat, sekarang bisa diwakili analitis, yakni dengan fungsi dan persamaan. Hal ini memainkan peran penting dalam munculnya kalkulus pada abad ke-17. Selanjutnya, teori perspektif menunjukkan bahwa ada lebih banyak geometri dari sekadar sifat metrik angka: perspektif adalah asal geometri proyektif. Subyek geometri selanjutnya diperkaya oleh studi struktur intrinsik benda geometris yang berasal dengan Euler dan Gauss dan menyebabkan penciptaan topologi dan geometri diferensial.

Dalam waktu Euclid tidak ada perbedaan yang jelas antara ruang fisik dan ruang geometris. Sejak penemuan abad ke-19 geometri non-Euclid, konsep ruang telah mengalami transformasi radikal, dan muncul pertanyaan: mana ruang geometris paling sesuai dengan ruang fisik? Dengan meningkatnya matematika formal dalam abad ke-20, juga 'ruang' (dan 'titik', 'garis', 'bidang') kehilangan isi intuitif, jadi hari ini kita harus membedakan antara ruang fisik, ruang geometris (di mana ' ruang ',' titik 'dll masih memiliki arti intuitif mereka) dan ruang abstrak. Geometri kontemporer menganggap manifold, ruang yang jauh lebih abstrak dari ruang Euclid yang kita kenal, yang mereka hanya sekitar menyerupai pada skala kecil. Ruang ini mungkin diberkahi dengan struktur tambahan, yang memungkinkan seseorang untuk berbicara tentang panjang. Geometri modern memiliki ikatan yang kuat dengan beberapa fisika, dicontohkan oleh hubungan antara geometri pseudo-Riemann dan relativitas umum. Salah satu teori fisika termuda, teori string, juga sangat geometris dalam rasa.

Sedangkan sifat visual geometri awalnya membuatnya lebih mudah diakses daripada bagian lain dari matematika, seperti aljabar atau teori bilangan, bahasa geometrik juga digunakan dalam konteks yang jauh dari tradisional, asal Euclidean nya (misalnya, dalam geometri fraktal dan geometri aljabar).

Permulaan geometri paling awal yang tercatat dapat ditelusuri ke Mesopotamia kuno dan Mesir pada milenium ke-2 SM.[1][2] Geometri pada awalnya adalah kumpulan prinsip yang ditemukan secara empiris mengenai panjang, sudut, luas, dan volume, yang dikembangkan untuk memenuhi beberapa kebutuhan praktis dalam survei, dan konstruksi. Teks geometri paling awal yang diketahui adalah Mesir Papirus Rhind (2000–1800 SM) dan Papirus Moskow (sekitar 1890 SM), Tablet tanah liat Babilonia seperti Plimpton 322 (1900 SM). Contohnya, Papirus Moskow memberikan rumus untuk menghitung volume piramida terpotong, atau frustum.[3] Tablet tanah liat (350-50 SM) menunjukkan bahwa astronom Babilonia menerapkan prosedur trapesium untuk menghitung posisi Jupiter dan gerakan dalam kecepatan waktu. Prosedur geometris tersebut mengantisipasi Kalkulator Oxford, termasuk teorema kecepatan rata-rata, pada abad ke 14.[4] Di selatan Mesir, Nubia kuno membangun sistem geometri termasuk versi awal jam matahari.[5][6]

Pada abad ke 7 SM, Yunani ahli matematika Thales of Miletus menggunakan geometri untuk menyelesaikan masalah seperti menghitung tinggi piramida dan jarak kapal. Hal tersebut dikreditkan dengan penggunaan pertama dari penalaran deduktif yang diterapkan pada geometri, dengan menurunkan empat akibat wajar dari Teorema Thales.[7] Pythagoras mendirikan Sekolah Pythagoras, yang dikreditkan dengan bukti pertama dari Teorema Pythagoras,[8] Padahal pernyataan teorema tersebut memiliki sejarah yang panjang.[9][10] Eudoxus (408–355 SM) mengembangkan metode, yang memungkinkan perhitungan luas dan volume gambar lengkung,[11] serta teori rasio yang menghindari masalah besaran yang tidak dapat dibandingkan, yang memungkinkan geometer berikutnya untuk membuat kemajuan yang signifikan. Sekitar 300 SM, geometri direvolusi oleh Euclid, yang Elemen , secara luas dianggap sebagai buku teks paling sukses dan berpengaruh sepanjang masa,[12] diperkenalkan ketelitian matematika melalui metode aksiomatik dan merupakan contoh paling awal dari format yang masih digunakan dalam matematika saat ini, bahwa definisi, aksioma, teorema, dan bukti. Meskipun sebagian besar konten Elemen sudah diketahui, Euclid mengatur menjadi satu kerangka kerja logis yang koheran.[13] Element diketahui oleh semua orang terpelajar di Barat hingga pertengahan abad ke 20 dan isinya masih diajarkan di kelas geometri hingga saat ini..[14] Archimedes (c. 287–212 SM) dari Syracuse menggunakan metode tersebut untuk menghitung luas di bawah busur dari parabola dengan penjumlahan dari tak terhingga pada deret, dan memberikan perkiraan yang sangat akurat dari Pi.[15] Dia juga mempelajari spiral yang menyandang namanya dan memperoleh rumus untuk volume dari permukaan revolusi.

Geometri dalam dimensi[sunting | sunting sumber]

Dalam dua dimensi[sunting | sunting sumber]

Geometri dalam dua dimensi adalah suatu bentuk yang berupa dua dimensi, yang berarti bangunan tersebut hanya melibatkan panjang dan lebar.[17]

Persegi[sunting | sunting sumber]

Persegi adalah bangun datar dua dimensi yang dibentuk oleh empat buah rusuk  yang sama panjang dan memiliki empat buah sudut yang kesemuanya adalah sudut siku-siku. Bangun ini disebut juga sebagai bujur sangkar.

Persegi panjang[sunting | sunting sumber]

Persegi panjang adalah bangun datar dua dimensi yang dibentuk oleh dua pasang sisi yang masing-masing sama panjang dan sejajar dengan pasangannya, dan memiliki empat buah sudut yang kesemuanya adalah sudut siku-siku.

Segitiga[sunting | sunting sumber]

Sebuah segitiga adalah poligon dengan tiga ujung dan tiga simpul. Ini adalah salah satu bentuk dasar dalam geometri. Segitiga dengan simpul A, B, dan C dilambangkan Gagal mengurai (MathML dengan SVG atau PNG sebagai cadangan (disarankan untuk peramban dan alat aksesibilitas modern): Respons tak sah ("Math extension cannot connect to Restbase.") dari peladen "/mathoid/local/v1/":): {\displaystyle \triangle ABC} .

Dalam geometri Euclidean, setiap tiga titik, ketika non-collinear, menentukan segitiga unik dan sekaligus, sebuah bidang unik (yaitu ruang Euclidean dua dimensi). Dengan kata lain, hanya ada satu bidang yang mengandung segitiga itu, dan setiap segitiga terkandung dalam beberapa bidang. Jika seluruh geometri hanya bidang Euclidean, hanya ada satu bidang dan semua segitiga terkandung di dalamnya; namun, dalam ruang Euclidean berdimensi lebih tinggi, ini tidak lagi benar.

Trapesium[sunting | sunting sumber]

Trapesium adalah bangun datar dua dimensi yang dibentuk oleh empat buah rusuk yang dua di antaranya saling sejajar namun tidak sama panjang.Trapesium termasuk jenis bangun datar segi empat yang mempunyai ciri khusus.

Jajar genjang[sunting | sunting sumber]

Jajar genjang
dengan alas  dan tinggi 

Jajar genjang atau jajaran genjang (bahasa Inggrisparallelogram) adalah bangun datar dua dimensi yang dibentuk oleh dua pasang rusuk yang masing-masing sama panjang dan sejajar dengan pasangannya, dan memiliki dua pasang sudut yang masing-masing sama besar dengan sudut di hadapannya. Jajar genjang termasuk turunan segiempat yang mempunyai ciri khusus. Jajar genjang dengan empat rusuk yang sama panjang disebut belah ketupat.

Lingkaran[sunting | sunting sumber]

Lingkaran adalah bentuk yang terdiri dari semua titik dalam bidang yang berjarak tertentu dari titik tertentu, pusat; ekuivalennya adalah kurva yang dilacak oleh titik yang bergerak dalam bidang sehingga jaraknya dari titik tertentu adalah konstan. Jarak antara titik mana pun dari lingkaran dan pusat disebut jari-jari. Artikel ini adalah tentang lingkaran dalam geometri Euclidean, dan, khususnya, bidang Euclidean, kecuali jika dinyatakan sebaliknya.

Secara khusus, sebuah lingkaran adalah kurva tertutup sederhana yang membagi pesawat menjadi dua wilayah: interior dan eksterior. Dalam penggunaan sehari-hari, istilah "lingkaran" dapat digunakan secara bergantian untuk merujuk pada batas gambar, atau keseluruhan gambar termasuk bagian dalamnya; dalam penggunaan teknis yang ketat, lingkaran hanyalah batas dan seluruh gambar disebut cakram.

Lingkaran juga dapat didefinisikan sebagai jenis elips khusus di mana dua fokus bertepatan dan eksentrisitasnya adalah 0, atau bentuk dua dimensi yang melingkupi area per satuan perimeter kuadrat, menggunakan kalkulus variasi.

Elips[sunting | sunting sumber]

Elips (merah) diperoleh sebagai persimpangan kerucut dengan bidang miring.
Elips: notasi
Elips: contoh dengan eksentrisitas yang meningkat

Elips atau oval yang beraturan adalah gambar yang menyerupai lingkaran yang telah dipanjangkan ke satu arah. Elips adalah salah satu contoh dari irisan kerucut dan dapat didefinisikan sebagai lokus dari semua titik, dalam satu bidang, yang memiliki jumlah jarak yang sama dari dua titik tetap yang telah ditentukan sebelumnya (disebut fokus).

Dalam bahasa Indonesia, elips atau oval yang beraturan juga sering dikenal istilah sepadan, yakni bulat lonjong (atau lonjong[18] saja), bulat bujur[19], dan bulat panjang.[19]

Dalam tiga dimensi[sunting | sunting sumber]

Dalam empat dimensi[sunting | sunting sumber]

Konsep penting dalam geometri[sunting | sunting sumber]

Berikut ini adalah beberapa konsep terpenting dalam geometri.[20][21][22]

Aksioma[sunting | sunting sumber]

Ilustrasi postulat paralel Euclid

Euclid mengambil pendekatan abstrak untuk geometri di Elements,[23] salah satu buku paling berpengaruh yang pernah ditulis.[24] Euklides memperkenalkan aksioma, atau postulat tertentu, yang mengekspresikan sifat utama atau bukti dengan sendirinya dari titik, garis, dan bidang.[25] Untuk melanjutkan untuk secara ketat menyimpulkan properti lain dengan penalaran matematika. Ciri khas pendekatan geometri Euclid adalah ketelitiannya, dan kemudian dikenal sebagai geometri aksiomatik atau sintetik.[26] Pada awal abad ke-19, penemuan geometri non-Euclidean oleh Nikolai Ivanovich Lobachevsky (1792–1856), János Bolyai (1802–1860), Carl Friedrich Gauss (1777–1855) dan yang lainnya[27] menyebabkan kebangkitan minat dalam disiplin tersebut pada abad ke-20, David Hilbert (1862–1943) menggunakan penalaran aksiomatik dalam upaya untuk memberikan dasar geometri modern.[28]

Titik[sunting | sunting sumber]

Titik yang dianggap sebagai objek fundamental dalam geometri Euclidean. Mereka telah didefinisikan dalam berbagai cara, termasuk definisi Euclid sebagai 'yang tidak memiliki bagian'[29] dan melalui penggunaan aljabar atau set bersarang.[30] Banyak bidang geometri, seperti geometri analitik, geometri diferensial, dan topologi, semua objek dianggap dibangun dari titik. Namun demikian, ada beberapa studi geometri tanpa mengacu pada titik.[31]

Garis[sunting | sunting sumber]

Euclid mendeskripsikan sebuah garis sebagai "panjang tanpa lebar" yang "terletak sama terhadap titik-titik pada dirinya sendiri".[29] Dalam matematika modern, mengingat banyaknya geometri, konsep garis terkait erat dengan cara menggambarkan geometri. Misalnya, dalam geometri analitik, garis pada bidang sering didefinisikan sebagai himpunan titik yang koordinatnya memenuhi persamaan linier tertentu,[32] tetapi dalam pengaturan yang lebih abstrak, seperti geometri kejadian, garis mungkin merupakan objek independen, berbeda dari kumpulan titik yang terletak di atasnya.[33] Dalam geometri diferensial, geodesik adalah generalisasi gagasan garis menjadi ruang melengkung.[34]

Bidang[sunting | sunting sumber]

Bidang adalah permukaan datar dua dimensi yang memanjang jauh tak terhingga.[29] Bidang digunakan di setiap bidang geometri. Contohnya, bidang dapat dipelajari sebagai permukaan topologi tanpa mengacu pada jarak atau sudut;[35] dapat dipelajari sebagai ruang affine, di mana collinearity dan rasio dapat dipelajari tetapi bukan jarak;[36] itu dapat dipelajari sebagai bidang kompleks menggunakan teknik analisis kompleks;[37] dan seterusnya.

Sudut[sunting | sunting sumber]

Euclid mendefinisikan bidang sudut sebagai kemiringan satu sama lain, dalam bidang, dari dua garis yang saling bertemu, dan tidak terletak lurus satu sama lain.[29] Dalam istilah modern, sudut adalah sosok yang dibentuk oleh dua sinar, disebut sisi dari sudut, berbagi titik akhir yang sama, disebut simpul dari sudut.[38]

Sudut tajam (a), tumpul (b), dan lurus (c). Sudut lancip dan tumpul juga dikenal sebagai sudut miring.

Dalam geometri Euklides, sudut digunakan untuk mempelajari poligon dan segitiga, serta membentuk sebuah objek belajar dengan sendirinya.[29] Studi tentang sudut segitiga atau sudut dalam sebuah lingkaran satuan membentuk dasar dari trigonometri.[39]

Dalam geometri diferensial dan kalkulus, sudut antara kurva bidang atau kurva ruang atau permukaan dapat dihitung menggunakan turunan.[40][41]-->

Kurva[sunting | sunting sumber]

Kurva adalah objek 1 dimensi yang bisa lurus (seperti garis) atau tidak; kurva dalam ruang 2 dimensi disebut kurva bidang dan kurva dalam ruang 3 dimensi disebut.[42]

Dalam topologi, kurva didefinisikan dari fungsi pada interval bilangan real ke ruang lain.[35] Dalam geometri diferensial, definisi yang sama digunakan, tetapi fungsi penentu harus dapat terdiferensiasi [43] Studi geometri aljabar kurva aljabar, yang didefinisikan sebagai varietas aljabar dari dimensi satu.[44]

Permukaan[sunting | sunting sumber]

Bola adalah permukaan yang dapat didefinisikan secara parametrik (dengan x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ) atau secara implisit (by x2 + y2 + z2 − r2 = 0.)

Permukaan adalah objek dua dimensi, seperti bola atau parabola.[45] Dalam geometri diferensial[43] dan topologi,[35] permukaan dijelaskan oleh 'tambalan' dua dimensi (atau lingkungan) yang dirangkai oleh diffeomorphism atau homeomorphism, masing-masing. Dalam geometri aljabar, permukaan dijelaskan oleh persamaan polinomial.[44]-->

Manifold[sunting | sunting sumber]

manifold adalah generalisasi dari konsep kurva dan permukaan. Dalam topologi, monifold adalah ruang topologi di mana setiap titik memiliki lingkungan yaitu homeomorfik ke ruang Euklides.[35] Dalam geometri diferensialmonifold terdiferensiasi adalah ruang di mana setiap tetangga diffeomorphic terhadap dimensi pada ruang Euklides.[43]

Manifold digunakan secara luas dalam fisika, termasuk dalam relativitas umum dan teori string.[46]

Panjang, luas, dan volume[sunting | sunting sumber]

Panjangluas, dan volume mendeskripsikan ukuran atau luas suatu objek masing-masing dalam satu dimensi, dua dimensi, dan tiga dimensi.[47]

Dalam geometri Euklides dan geometri analitik, panjang ruas garis sering kali dapat dihitung dengan Teorema Pythagoras.[48]

Luas dan volume dapat didefinisikan sebagai besaran fundamental yang terpisah dari panjang, atau dapat dijelaskan dan dihitung dalam istilah panjang dalam bidang atau ruang 3 dimensi.[47] Matematikawan telah menemukan banyak rumus untuk luas dan rumus untuk volume dari berbagai objek geometri. Dalam kalkulus, luas dan volume dapat didefinisikan dalam integral s, seperti integral Riemann[49] atau Integral Lebesgue.[50]-->

Metrik dan ukuran[sunting | sunting sumber]

Pemeriksaan visual Teorema Pythagoras untuk (3, 4, 5) segitiga seperti pada Zhoubi Suanjing 500–200 SM. Teorema Pythagoras adalah konsekuensi dari metrik Euklides.

Konsep panjang atau jarak dapat digeneralisasikan, yang mengarah ke gagasan metrik.[51] Misalnya, metrik Euclidean mengukur jarak antar titik di bidang Euclidean, sedangkan metrik hiperbolik mengukur jarak di bidang hiperbolik. Contoh penting lainnya dari metrik termasuk metrik Lorentz dari relativitas khusus dan semi metrik Riemannian dari relativitas umum.[52]

[53]

Kekongruenan dan keserupaan[sunting | sunting sumber]

Kesesuaian dan kesamaan adalah konsep yang mendeskripsikan jika dua bentuk memiliki karakteristik yang serupa.[54] Dalam geometri Euclidean, kesamaan digunakan untuk mendeskripsikan objek yang memiliki bentuk yang sama, sedangkan congruence digunakan untuk mendeskripsikan objek yang memiliki ukuran dan bentuk yang sama.[55]<!-;Hilbert, in his work on creating a more rigorous foundation for geometry, treated congruence as an undefined term whose properties are defined by axioms.-->

Kesamaan dan kesamaan digeneralisasikan dalam geometri transformasi, yang mempelajari properti objek geometris yang dipertahankan oleh berbagai jenis transformasi.[56]-->

Konstruksi kompas dan pembatas[sunting | sunting sumber]

Geometer klasik memberikan perhatian khusus untuk membangun objek geometris yang telah dijelaskan dengan cara lain. Secara klasik, satu-satunya instrumen yang diperbolehkan dalam konstruksi geometris adalah kompas dan penggaris lurus. Selain itu, setiap konstruksi harus diselesaikan dalam jumlah langkah yang terbatas. Namun, beberapa masalah ternyata sulit atau tidak mungkin diselesaikan dengan cara ini sendiri, dan konstruksi cerdik menggunakan parabola dan kurva lainnya, serta perangkat mekanis.

Dimensi[sunting | sunting sumber]

Dimana geometri tradisional mengizinkan dimensi 1 (a garis), 2 (a bidang) dan 3 (dunia ambien kita dipahami sebagai ruang tiga dimensi)), matematikawan dan fisikawan telah menggunakan dimensi yang lebih tinggi selama hampir dua abad.[57] Salah satu contoh penggunaan matematika untuk dimensi yang lebih tinggi adalah ruang konfigurasi dari sistem fisik, yang memiliki dimensi yang sama dengan derajat bebas. Misalnya, konfigurasi sekrup dapat digambarkan dengan lima koordinat.[58]

Dalam topologi umum, konsep dimensi telah diperpanjang dari bilangan asli, menjadi dimensi tak hingga (ruang Hilbert s, misalnya) dan positif bilangan real (dalam geometri fraktal).[59] Dalam geometri aljabardimensi variasi aljabar telah menerima sejumlah definisi yang tampaknya berbeda, yang semuanya setara dalam kasus yang paling umum.[60]

Simetri[sunting | sunting sumber]


Sumber: https://id.wikipedia.org/wiki/Geometri

Tidak ada komentar:

Posting Komentar